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ANALYSIS OF TRANSONIC FLOW ABOUT LIFTING 

WING- BODY CONFIGURATIONS 

Richard W. Barnwell 
Langley Research Center 

SUMMARY 

An analytical solution is obtained for  the perturbation velocity potential for tran- 
sonic flow about lifting wing-body configurations with order-one span-length rat ios  and 
small  reduced- span-length ratios and equivalent- thickness-length ratios. The analysis 
is performed with the method of matched asymptotic expansions. The angles of attack 
which are considered are small  but a r e  large enough to insure that the effects of l if t  in 
the region far from the configuration are either dominant o r  comparable with the effects 
of thickness. The modification to the equivalence rule which accounts for these l if t  effects 
is determined. An analysis of transonic flow about lifting wings with large aspect ra t ios  
is also presented. 

INTRODUCTION 

It is well known that the outer par t  of transonic flow fields about lifting configura- 
tions a t  small  angles of attack is governed largely by the effects of thickness. It has been 
shown by Oswatitsch and Keune (ref. 1) that the flow in the region far from nonlifting wing- 
body configurations is mathematically equivalent to that about axisymmetric bodies with 
the same cross-sectional area distributions. Whitcomb (ref. 2) has demonstrated experi- 
mentally that the wave drags of wing-body combinations at zero  angle of attack are the 
same as those of the equivalent axisymmetric bodies. The analysis of Heaslet and 
Spreiter (ref. 3)  shows that these zero-angle-of-attack resul ts  a lso apply to configura- 
tions a t  angles of attack of the order  of the wing thickness o r  less. The main purpose of 
this report  is to present an analytical solution for  transonic flow about lifting configura- 
tions a t  angles of attack large enough to insure that the effects of lift either dominate or  
are comparable with the effects of thickness in the outer region. 

The present problem and two s imilar  problems which have been analyzed previously 
The problem of transonic flow past  slender bodies at angles of are compared in figure 1. 

attack of the order  of the equivalent-thickness-length rat io  has been treated by Messiter 
(ref. 4), Hayes (ref. 5), and Lifshits (ref. 6) with the method of asymptotic expansions. 
The problem of transonic flow past  wing-body combinations with spans of order  one at 



Previous studies Present  study 

CY Body thickness ra t io  CY cc Wing thickness ra t io  (Y cc Body thickness ra t io  

Figure 1.- Comparison of past  and present transonic studies. 

angles of attack proportional to the wing thickness-length rat io  o r  smaller  has been stud- 
ied by Hayes (ref. 5 )  and by Cheng and Hafez (ref. 7) with the method of matched asymp- 
totic expansions and by Heaslet and Spreiter (ref. 3)  with the integral equation formula- 
tion. Since the flow is thickness dominated for  both of these problems, the equivalence 
rule  of Oswatitsch and Keune applies. As is indicated in figure 1, the present problem 
involves flow about wing-body combinations a t  angles of attack which are small  but much 
la rger  than the wing thickness. In the f i r s t  attempt a t  solving the present problem, Cheng 
and Hafez (ref. 7) obtained resu l t s  which indicated that when the effects of l if t  and thick- 
ness  were comparable in the outer region, the expressions for  each of these effects are the 
same as that obtained when the effects of thickness are dominant. 
sion of the present treatment (ref. 8), i t  was shown that, to the contrary, when the effects 
of lift and thickness are comparable in the outer region, there is a source flow due to l if t  
which is of the same order  of magnitude as the source flow due to thickness. La ter  in 
this paper, i t  is argued on physical grounds that this type of influence by lift is reasonable. 
A s  a resul t  of the source flow due to lift, the equivalence rule  of Oswatitsch and Keune is 
not applicable to the present problem. 
the outer region obtained in reference 8 for the present problem was different f rom that 
obtained for the thickness-dominated problem. This difference in radial length scale 
resulted from the choice of relationship between the angle of attack and the equivalent 
thickness ra t io  which was used. In reference 9 Cheng and Hafez show that there is a 
second relationship between the angle of attack and the equivalent thickness ra t io  which 
leads to the same source flow due to lift obtained in reference 8 and which yields the same 
outer-region radial  length scale found for thickness-dominated flows. This second length 
scale is physically more realist ic and thus is the one used in this report. 

In the preliminary ver- 

It should be noted that the radial length scale in 

In this report  the analytical solution for transonic flow about lifting configurations 
with span-length rat io  of order  one and small  reduced span-length rat ios  the product of 

the span-length rat io  and the factor /- when Mc, is the free-s t ream Mach num- 
ber  is derived in detail with the method of matched asymptotic expansions. This solution 
is determined to within an  arbi t rary additive function of the length along 'the axis which 
cannot be determined with the present method. There is a brief discussion of how this 

( 

) 
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unction can be determined by use of numerical techniques. Also a study is made of the 
roblem of lifting transonic flow about configurations with large aspect ratios. 

SYMBOLS 

arb i t ra ry  functions in unmatched outer expansion 

functions in twist and camber potential (see appendix B) 

a 

b wing semispan 

CP pressure  coefficient 

C W 

C exponent, 0 5 c 5 1 

constant of proportionality in equation (54) for angle of attack 

constant of proportionality of order  one (see eqs. (3) and (95)) 

Cartesian coordinates locating vortex core relative to wing tip (see fig. 8) 

complete elliptic integral of second kind 

nondimensional thickness distribution of body 

nondimensional thickness distribution of equivalent body 

E 

F (3 

F e  (z) 

f(3 nondimensional dipole strength distribution 

GI (3 'G3 (3 

g ( W )  

g n ( 3  ,gm , n ( 3  arbi t rary additive functions in inner potentials (bn and (bm,n 

gg (3 arbi t rary additive function in inner thickness potential 'p6 

H (3 

arbi t rary additive functions in outer expansion (see eq. (68)) 

twist and camber distribution of wing 

secondary source- strength distribution in outer expansion given 
by equation (51) 

3 



thickness distribution of wing 

- - - also complete elliptic integral of first kind 
2 

€1 

modulus of E and K given by equation (26) 

characterist ic length in  x-direction 

characterist ic length in  x-direction, configuration length unless otherwise 
noted 

free-s t ream Mach number 

m+(x",y),m, (x",Y) functions in equation (29) for potential near configuration 
surface 

nonnegative number 

body-oriented cylindrical polar velocity components (see eqs. (2)) 

radial body- oriented coordinate 

radius of body surface 

Mirels'  S-function (also Mangler's H-function) 

lowest order  source strength of configuration in outer region 
(see eqs. (69), (70), and (71)) 

distance in cross-flow plane along wing and leading-edge vortex sheet from 
center of wing 

maximum thickness of equivalent body 

maximum thickness of wing 

free-s t ream speed 

I 

I 

I 
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u,v,w 

vc,wc 

body- oriented cylindrical polar perturbation velocity components 

body-oriented Cartesian perturbation velocity components in 
y- and z-direction, respectively 

W complex potential 

X complex variable, y" + iz" 

X,Y ,z 

Y 

Y ,(x) ,Y 1 (x) 

body-oriented Cartesian coordinates (see fig. 3) 

complex function defined by equation (A2) 

leading and trailing edges of wing 

transformed complex variable defined by equation (A16), q + it 

z-coordinate of wing surface 

angle of attack 

angle defined by equations (A9) or (A14) 

strength of vortex core 

ratio of specific heats 

vortex strength of wing or  vortex-sheet segment 

potential jump across  vortex-sheet segment 

equivalent body thickness ratio,  t/f 

nth gage function in outer expansion for  q 

coordinates in transform planes (see figs. 8 and 9) 

q-coordinates of leading and trailing edges of wing (see fig. 9) 

body-oriented polar angle (see fig. 3) 

5 
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L A 

x - b  
- 7  

nth gage function in intermediate expansion for cp Pn 

V stretching parameter for  outer radial coordinate 

P infinite simal radius 

0 angle in transform plane depicted in figure 8 

a n  nth potential in outer expansion for cp 

@m ,n 

@n potential in inner expansion for cp with gage function sinn CY 

potential in inner expansion for cp with gage function logp(&)sinn a 

@la ,@lb  components of potential @1 (see appendix B) 

@2a,@2b,@2c,@2d components of potential G 2  (see appendix C) 

cp perturbation velocity potential 

thickness potentials in inner expansion for  cp %@6,1 

nth potential in intermediate expansion for cp *n 

rc/ component of thickness potential cp6 given by equation (30) 

w,w1,02 angles shown in figure 10 

two-dimensional Laplace operator in cross-flow plane (see eqs. (12) and (21)) v; 

Super scr ipts  : 

C complementary solution 

P particular solution 

6 



V vortex 

A bar over a symbol denotes outer variable (see eqs. (9)). A tilde over a symbol 
denotes inner variable (see eqs. (8)). A circumflex over a symbol denotes an  intermediate 
variable (see eqs. (72)). Pr imes  denote differentiation with respect  to 2, W, or  2. An 
asteri'sk denotes a complex conjugate. 

EFFECT OF LIFT AT NEAR-SONIC SPEEDS 

It is well known that the effect of thickness is to deflect streamlines outward from 
the configuration. It can be shown that for  near-sonic flow, lift can also have this effect 
in addition to the usual downwash effect. 
deflection of streamlines is depicted schematically in figure 2. The cross-sectional area 

The manner in which l if t  causes the outward 

Velocity increases  above wing; Stream tube s ize  . 
near  minimum in 4 / s t r eam tube s ize  increases  0 
transonic f ree  
s t ream 

/ - c. r;) Velocity decreases  below wing; 
L / s t r eam tube s ize  increases  

Figure 2.- Outward displacement of streamlines by both lift and thickness effects. 

of s t ream tubes is minimum where the flow is sonic. The effect of l i f t  is to increase the 
fluid speed in s t ream tubes above the wing and to decrease the speed in  the tubes beneath 
the wing. 
decrease in fluid speed are deviations from near-sonic flow. Thus for  sufficiently large 
angles of attack, the c ros s  sections of practically all the s t ream tubes about the body 
increase so  that the streamlines are deflected outward more than they would be by thick- 
ness  effects alone. The magnitude of the angle-of-attack range in which this phenomenon 
occurs  will be established subsequently. I t  should be noted that the phenomenon does not 

F o r  configurations traveling at Mach numbers near 1 ,  both the increase and 

7 



occur for  completely subsonic or completely supersonic flow, where an  increase in  
stream-tube size on one side of the wing is compensated by a decrease on the other. 

SLENDER CONFIGURATION PROBLEM 

Wings are described traditionally as being slender if the reduced span the product 

of the span and the factor ill - ~ 1 )  is much smaller  than the length. In this section an  
analytical solution is obtained f o r  transonic flow past  slender configurations with span- 
length rat ios  of order  one which are at angles of attack large enough to  insure that the 
effects of lift and thickness are comparable at large distances from the configurations. 
The method of matched asymptotic expansions is used. The solution is determined to 
within an  arbi t rary additive function of distance along the axis which cannot be obtained 
with the present method. There is a brief discussion of methods which can be used to 
determine the additive function. 

( 

Problem Description 

In this subsection the problem is described and the governing equation and boundary 
conditions are established. The problem is to analyze transonic flow about lifting wing- 
body configurations with small  equivalent- thickness ra t ios  6 and semispan-length 
rat ios  X of order  one which are a t  angles of attack CY so  that the effects of l if t  in the 
outer region either dominate or are comparable with the effects of thickness. Let  the 
free-s t ream Mach number, the configuration length and semispan, and the maximum thick- 
nesses  of the wing and equivalent body be &, Q, b,  tw, and t ,  respectively. The 
flow fields which are considered in this section are characterized by the parameters  

7 1 %  - 11 << 1 

I X = b = O(1) Q 

Body- oriented cylindrical polar and Cartesian coordinate systems are used in this 
report. These coordinate systems are shown in figure 3. For a vehicle at an angle of 
attack CY, the total velocity components in the x-, r-, and &directions are 

8 
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qx(x,r,8) = u, COS CY + u(x,r,e) 

qr(x,r,e) = U, s in  a, s in  e + v(X,r,e) 

qe(x,r,8) = U, s i n a  COS e + w(x,r,e) 

where U, is the free-stream velocity and u, v, and w are the perturbation velocity 
components in the x-, r-, and &direction, respectively. 
ity components in the y- and z-directions are designated as vc and wc, respectively. 

The Cartesian perturbation veloc- 

Z f r  

Figure 3.- Frame  of reference. 

Consider a wing-body combination composed of a slender axisymmetric body and 
a thin wing which passes  through or near the body axis. It is assumed that the cross- 
sectional areas of the wing and body are, in general, of the same order  of magnitude. 
Since the cross-sectional area of the wing is proportional to both t2 and btw, the wing 
thickness can be expressed as 

9 
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tw = c w g  1 
The body radius rb and wing thickness zw, which are depicted in figure 4, are specified 
by the equations 

rb = t F(x) 

and 

zw = Q s in  CY g(x,y) * tw h(x,y) 

respectively, where the plus sign in equation (5) is used f r the top surface of wing and 
the minus sign is used for the bottom surface. The function F(x) is the nondimensional 
radius of the body, and the functions g(x,y) and h(x,y) give the twist and camber dis- 
tribution and the thickness distribution of the wing, respectively. As shown in figure 4, 

zw = P sin (Y g + twh r 

L z ,  = P sin (Y g - twh 

t x  

(a) Planform. (b) Cross  section. 

Figure 4.- Vehicle geometry. 

the leading and trailing edges of the wing are specified by the functions y (x) and y (x), 
respectively. It is assumed that the wing twist and camber are scaled by the quantity 
Q s in  a! (that is, the order  of magnitude of the twist and camber is assumed to be Q s in  a) 

2 1 
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so  that the effects of these quantities are of the same order  of magnitude as those of angle 
of attack. The exact boundary conditions at the body and wing surfaces are 

and 

ax wc(x,y,zw) = -u, s in  CY + U, cos  CY + [ 

re spe ctively . 
It is assumed that the flow fields under consideration are isentropic. Although this 

assumption is not strictly valid when shock waves are present,  i t  can be shown (ref. 10) 
that the largest  t e rm which is affected by the nonisentropic condition is of the order  
(1 - M33, which is very small  for transonic flow. Hayes (ref. 5 )  and Cole and Messiter 
(ref. 11; also ref. 4)  show that to the degree of approximation employed in this report ,  the 
isentropic assumption is valid. 

If the flow is isentropic, the perturbation velocity potential cp can be defined so  
that 

From equation (5.5) of reference 4, it can be shown that the exact partial differential equa- 
tion governing cp is 

(Equation continued on next page) 
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Application of Method of Matched Asymptotic Expansions 

This method is applicable to problems for which the characterist ic length scale  of 
disturbances in a limited region of interest ,  called the inner region, differs from that in 
the surrounding, or  outer, region when one o r  more control parameters  are small. As  a 
resul t  of this difference in length scales ,  the magnitudes of various te rms  in the governing 
equations differ in the two regions s o  that the approximate forms  of the governing equa- 
tions in the two regions are different. The formal procedure is to determine asymptotic 
expansions in the inner and outer regions and to match these expansions term by term 
according to the matching principle of Kaplun and Lagerstrom (ref. 12) in the zone where 
the two regions overlap. This matching of te rms  serves  to determine coefficients and 
gage functions in the expansions. If the inner and outer regions do not overlap, as in the 
case for  the problem treated in this report ,  the formal procedure includes the determina- 
tion of a third expansion in an intermediate region which overlaps the inner and outer 
regions. This intermediate expansion is then matched to both the inner and the outer 
expansions. A detailed discussion of the method of matched asymptotic expansions has 
been given by Van Dyke (ref. 13). 

The problem of transonic flow past  lifting configurations with span-length rat ios  of 
order  one is well suited for treatment with this method since the magnitude of the length 
scale in planes normal to the axis is the same as that of the span near the vehicle but 
is much la rger  than that of the span a t  large distances f rom the vehicle if the reduced 

semispan-length rat io  fm b/Q is small. In this report  the length scales  for 
the axial and radial coordinates in the inner region are chosen to be the configuration 
length Q and the semispan b, respectively. Therefore, the independent variables in 
this region are 2, F, and 8 where 

12 



The length scales for the axial and radial  coordinates in the outer region are 
Q/v, respectively, where 

Q and 

Thus, the independent variables in the outer region E, F, and 8 a r e  

b 
7' where A = 

It  will be shown that as indicated previously, the regions of validity of the inner and 
outer expansions for the present problem do not overlap. Consequently, an intermediate 
expansion is obtained and matched with the inner and outer expansions in order  to show 
that the formal matching procedure of Kaplun and Lagerstrom (ref. 12) can be applied to 
this problem. However, i t  is f i r s t  shown that the inner and outer expansions can be con- 
structed with a l e s s  formal and also less complicated procedure. This procedure con- 
s i s t s  of the determination of the gage function of the leading term of the outer expansion 
in t e rms  of the stretching parameter 
large values of the inner radial  variable F, the transformation of this expansion to outer 
variables,  and the matching of the gage function of the leading te rm in the transformed 
expansion to the known expression for the gage function of the leading te rm in the outer 
expansion. 

u, the determination of the inner expansion for 

Scaling of Basic Parameters  

The relationships between the parameter  v, the free-stream Mach number &, 
and the magnitude of the velocity potential in the outer region can be established from 
physical considerations. Le t  the expansion for the velocity potential in the outer region 
be written as 



where 

E l  << 1 

From equations (7), (9), and (lo),  it can be shown that the first approximation to the gov- 
erning equation in the outer region is 

2 where v2, the Laplace operator in planes normal to the x-axis in te rms  of outer vari-  
ables, is written as 

and where the prime denotes differentiation with respect  to F. If equation (11) is to be 
valid for completely subsonic and completely supersonic flows, the magnitudes of the 
te rms  on the left-hand side must be the same. If the sign of the coefficient of the deriva- 
tive +: in equation (11) is to change, as it must for  transonic flow, the magnitude of the 
term on the right-hand side must be the same as that of the first te rm on the left. Con- 
sequently, the quantities 1 - &, v2, and el in  equation (11) must be of the same order  
of magnitude. In this repor t  this fact is expressed as 

where K is an order-one constant. Note that equation (11) is, in general, of the mixed 
ellip ti c- hyperbolic type. 

As noted in ''Introduction," the outer regions of transonic flow fields about slender 
bodies at angles of attack of the order  of the equivalent thickness ratio and about wing 
bodies with span-length rat ios  of order  one a t  angles of attack of the order  of the wing 
thickness are dominated by thickness effects. Oswatitsch and Keune (ref. 1) show that if 
thickness effects are dominant, the radial  stretching parameter  v and the equivalent 
thickness ratio 6 are of the same order  of magnitude. It should be noted that i t  is com- 
mon practice to equate these two quantities. In reference 9 Cheng and Hafez point out that 
it is physically realistic to assume that the relationship between v and 6 which is valid 
for thickness-dominated flows should also hold for  flows where the effects of lift and thick- 
ness  are comparable. Consequently, it is assumed in  this repor t  that v and 6 are 
related by the equation 
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(14 1 v =  6 

if the effects of lift and thickness are of the same order  of magnitude in the outer region 
and by the inequality 

gg 
=jg 
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$ 4  Inner Expansion 
: {  
IC! 

if the effects of lift are dominant. 

It should be noted that it remains to establish the relationship between the angle of 
attack o! and the other basic parameters.  

f 
I. 

The perturbation velocity potential in  the inner region may be written as 

m 

n= 1 

co 

+ 2 A3m-2 s inm Q, + 2 log:(&) 
m= 2 

co r m 

The first two te rms  are the usual lowest order  thickness te rms ,  the third term is the 
usual lowest order  lift term,  and the remaining t e rms  are the higher order  lift,  thickness, 
and lift- thickness interaction terms. The thickness potentials have the leading sub- 
scr ipt  6 ,  and the potentials with gage functions proportional to sinm (Y have the lead- 
ing subscript  m. The potentials with gage functions proportional to log$(&) have a 
second subscript  n. Since a unique relationship can and will be established between the 
angle of attack Q, and the equivalent thickness ra t io  6 ,  i t  is possible to express  all the 
gage functions in  equation (16) in t e rms  of only one of these parameters.  In this report ,  
however, the lowest order  gage functions are expressed in te rms  of their respective nat- 
u ra l  parameters  for  purposes of simplicity. It will be shown that the gage functions of 
the thickness t e rms  are of the same order  of magnitude as those of some of the second- 
order  l i f t  terms. 

The boundary conditions (eqs. (6)) can be expressed in t e rms  of the component 
potentials of the inner expansion (eq. (16)) to second order  in  6 and sin Q, as 

15 
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The potentials ‘p6 ,1, @2,1, and @2 satisfy homogeneous Neumann boundary 
conditions. 

7 I 

The governing equations for the component potentials in the inner expansion (eq. (16)) 
are obtained after substitution of that expansion into equation (7) and collection of t e rms  
of the same magnitudes. 

I 

It is found that the first-order potential G1 and all the second- I 

o rder  potentials except G2  satisfy the two-dimensional Laplace equation in the cross-  I 
flow plane. For example, i 

where 

The potential $2 satisfies the Poisson equation 
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The governing equations for  the higher order  potentials are discussed subsequently. It 
is interesting to note that the governing equations of the inner potentials are all parabolic 
since the determinant of the second-order coefficient matrix vanishes for  each of these 

gg# 

equations. (See ref. 14.) 1% 
-- -2- - order  potential @l are given by equations (20) and (18), respectively. Solutions f o r  this 
- R" 
"*% :! 
$ 

, F  Firs t -order  potential.- The governing equation and boundary conditions for the first- 

7 = potential, which are traditionally termed slender-wing solutions, have been obtained pre- 
I .  

viously for  the three wing-body configurations depicted in figure 5. 

(a) Attached leading-edge (b) Separated leading-edge (c) Attached leading-edge 
flow. flow. flow; swept trailing edge. 

Figure 5.- Wing-body configurations with known slender-wing cross-flow solutions. 

In this report  flows in which the lower surface-wetting streamlines which approach 
the leading edge separate f rom the surface a t  the leading edge are termed separated 
leading-edge flows. Flows in which the surface-wetting streamlines remain attached to 
the surface are termed attached leading-edge flows. The solution for attached leading- 
edge flow past wing-body configurations with flat  wings with straight trailing edges 
(fig. 5(a)) was obtained by Spreiter (ref. 15) and Ward (ref. 16). It should be noted that 
this solution is an  extension of the basic slender-wing solution obtained by Jones (ref. 17). 
The solution for separated leading-edge flow past  configurations of the same type (fig. 5(b)) 
was obtained by Wei, Levinsky, and Su (ref. 18) and is an extension of the work done by 
Mangler and Smith (ref. 19) and Smith (ref. 20) on separated leading-edge flow past  slender 
flat-plate delta wings. The solution for attached leading-edge flow past  wing-body config- 
urations with flat-plate wings with swept leading and trailing edges (fig. 5(c) was developed 
by Mirels  (ref. 21) and Mangler (ref. 22). These solutions are reviewed in appendix A. 
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No slender-wing solution fo r  separated leading-edge flow past  a wing with a swept trailing 
edge is known to the author. 

As mentioned previously, the inner and outer expansions are to be matched in  the 
is large. In appendix A it is shown that in the region where the inner radial  variable 

region beyond the wing where ? >> Y2(ft), the potential can be written as 

For the configurations in figures 5(a) and 5(b), which have swept leading edges only, 

where y2(x) is the function for  the leading edge of the wing. It is shown in appendix A 
that this equation is valid to lowest order  for both attached and separated leading-edge 
flow. For the configuration in figure 5(c), which has both swept leading and swept trailing 
edges, the function f satisfies the equation 

where K and E are complete elliptic integrals of the f i r s t  and second kinds, respec- 
tively, with the argument 

The quantity S(Z) is the same as the function S used by Mirels (see section 4 of 
ref. 21) and H used by Mangler (see section 3 of ref. 22) for  wings with swept trailing 
edges. I t  is shown in appendix B that fo r  configurations with twisted and cambered wings, 
the function f can be approximated as 

i f  only the leading edge of the wing is swept. It is also shown that if both the leading and 
trailing edges of the wing are swept, the derivative f'(ft) is approximately 
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where the modulus of K and E is given by equation (26). The function Bo(%) is the 

function is discussed in section 2 of reference 23. 

- - same as the function B used by Klunker and Harder (ref. 23). The determination of this 
-2 

3 3  
i8q 

-2. 

4's. 

In the region very near the wing, the potential $1 can be expressed in the form 

*.i; 

3 
P 
9 
%- 
2 
: respectively. 
% 

Thickness potentials.- The te rms  in the inner expansion (eq. (16)) involving the g 

' thickness potentials cp6 and cp6,1 are of second order  in that the gage functions of 

5 the two-dimensional Laplace equation in the cross-flow plane. The potential cp6 sat- 

! 
JII Neumann boundary conditions. 

2 It  has been shown by Stocker (ref. 24) that the solution for  cp6 is j 

in order  to satisfy boundary conditions (eqs. (18)). 
the determination of the surface flow properties and some of the higher order  terms. The 
upper and lower signs in equation (29) apply on the leeward and windward s ides  of the wing, 

This form of the potential is used in 

L 

these te rms  are 62 and ti2 loge(l/hv), respectively. 

isfies boundary conditions (eqs. (17)) and the potential 

Both potentials are governed by 

cp satisfies homogeneous 
6 9 1  

? *  
i f  

qj(Z,P,B) = g g ( 3  + +%,P,@ 

where 

- ~ .. ~ - 

4r -2-4 rb(X) 

+ l oge iF2  + -7 - v2 

For  F >> y",(X"), equation (30) can be approximated as 
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where Fe(Z), the nondimensional thickness distribution of the axisymmetric body with the 
same cross-sectional area, is written as 

Since the governing equation and boundary conditions for q are homogeneous 
and are expressed in te rms  of the independent variables in the cross-flow plane, this 
potential can only depend on the independent variable Z. Oswatitsch and Keune (ref. 1) 
have shown that if the leading term in the outer expansion depends on the thickness, as is 
the case for  flows which are thickness dominated and flows for which the effects of lift 
and thickness are comparable, the potential q 
expansions are matched. With equations (9) the thickness pa r t  of the inner expansion 
(eq. (16)) can be written in t e rms  of outer variables for large values of the inner radial  
variable P as 

6 Y 1  

is determined when the inner and outer 
6 7 1  

It has already been shown that if the leading term in the outer expansion depends on thick- 
ness,  the gage function of this term can be written as 

It follows that the leading te rm on the right-hand side of equation (32) must be ze ro  so  that 

Second-order lift potentials.- The potentials @2,1 and @2,2 a r e  governed by 
the two-dimensional Laplace equation in the cross-flow plane and satisfy homogeneous 
Neumann boundary conditions. 
pendent variable 

Consequently, these potentials are functions of the inde- 
only and can be written as 
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The potential is governed by equation (22), a Poisson equation, and satisfies boundary 
conditions (eqs. 19)). The particular solution for  $2 was first presented in reference 8. 
This solution, which was derived for large values of the inner radial variable in t e rms  of 
wind-oriented coordinates, is written in t e rms  of the body-oriented coordinates used in 
this report  as 

@2 

In reference 9 Cheng and Hafez present the solution for  G2 in t e rms  of wind- 

The solution in t e rms  of 
Let the potential @2 

? 
4i 

w FL 

oriented coordinates in a form which is not res t r ic ted to large values of the inner radial 
variable. 
body-oriented Coordinates can be obtained in a s imilar  manner. 
be written as 

3 

:I 
i! 
8 
$ 

This solution is derived in detail in reference 25. 

4 2  = 82 + @2a + @2b + @2c + @2d (36) 

where the potentials @aa, @2b, and @zC are governed by the Poisson equations 

and satisfy homogeneous Neumann boundary conditions. The potential @2d is governed 
by the two-dimensional Laplace equation in the cross-flow plane and satisfies the bound- 
a ry  conditions 

\ 

Consider the particular solution of @za and @2b. Le t  the complex variables in 
the cross-flow plane in t e rms  of inner variables be 
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and let the complex conjugate of X be designated as X*. Equations (37) and (38) can 
be written as 

and 

respectively. Cheng and Hafez (refs. 9 and 25) show that the general form of the partic- 
ular soiutions to equations (41) and (42) are 

(43) 

(44) 

More detailed forms  of these solutions are given in references 9 and 25 and in appendix C 
of this report. 

It should be noted that the potential @2c appears in the present treatment and not 
in that of references 9 and 25 because body-oriented coordinates are used in the former 
case and wind-oriented coordinates in the latter.  Equation (39) can be written in te rms  
of Cartesian coordinates as 

The particular solution to equation (45) is 

(45) 

P It has been shown by Cheng and Hafez (ref. 9) that the particular solutions @2a 
and @2b do not satisfy the appropriate boundary conditions. It is shown in appendix C 
that the particular solution r4zC does not satisfy the boundary conditions either. In 
order  to enforce the boundary conditions, i t  is necessary to include the complementary 

C solutions. In reference 25 Cheng and Hafez derive the complementary solutions @2a 

P 

22 



and @!& subject to the assumption that the presence of the body can be ignored. This 
assumption can be made since the body radius is, in general, small  compared with the 
wing span so  that the te rms  depending on the body radius are of higher order. The gen- 

is written as era1 form of the potential @2a C 

C C Similar expressions pertain for the potentials @2b and @2c. Detailed expressions for  
these solutions a r e  given in appendix C. 
that in order  for the solution @ga to exist, the derivative @i must be differentiable 
in y a t  all points on the wing. This condition is not met, in general, by attached-flow 
solutions for The solution for  @2a derived in references 9 and 25 w a s  res t r ic ted 
to attached flow past  wings with leading edges which are drooped in such a manner that 
the differentiability condition is met. 
for a given wing a t  which a solution can be obtained. In appendix C it is shown that the 
solution presented in references 9 and 25 is also valid for  separated leading-edge flow a t  
arbitrary angles of attack. 

The potential 

I t  should be noted that i t  is shown in reference 25 

Consequently, there is a t  most one angle of attack 

@2d, which is governed by the two-dimensional Laplace equation and 
satisfies boundary conditions (eqs. (40)), is written as 

log, ks - X)(s  - X * i  d s  (48) 

The presence of the body has been ignored as before. 
tial 
l if t  potential is not resolved into f i rs t -  and second-order par t s  in those references. 

the sum of the potentials @p and @: where @f is given by equation (35) and @$ 
is written as 

It should be noted that the poten- 

@2d does not appear explicitly in the treatments of references 9 and 25 because the 

From the resul ts  of appendix C,  i t  is seen that for  F >> y2(2), the potential G2 is 

2 
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where the coefficient H(Z) is 

t - sl)dt  d s  

-- 1 g"(2,s) - m'(Ei,s)k - (51) 
I 

The function y(2,y) is the wing vorticity a t  the point x",y". 

The relationship between the radial stretching parameter  v and the angle of 
attack (Y for flows for which the effects of lift are either dominant or  comparable with 
the effects of thickness can be determined from a study of the second-order lift poten- 
tials. It can be shown from equations (9), (34), (35), and (50) that the sum of the second- 
order  l if t  t e rms  in the inner expansion can be written in t e rms  of outer variables for  
large values of the inner radial  variable P as 

= A4 s i n 2  o log: :+-)[g2,2E) + f'(T[) + A4 s i n 2  o log,/+-) \ 

If the effects of lift are to influence the f i r s t  term in the outer expansion, the gage func- 
tion of the leading nonvanishing te rm on the right-hand side of equation (52) must be equal 
to €1. It has been shown that the parameter  v can be related to el by equation (13). 
In reference 8 i t  was assumed that none of the t e rms  on the right-hand side of equation (52) 
vanish. This assumption led to the conclusion that cy was related to X and v by the 
equation 
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where a is an  order-one constant. In addition, i t  necessarily followed that if the effects 
of lift and thickness were comparable, 6 was related to A and v by the equation 

where p is an order-one constant, ra ther  than by equation (14). In reference 9 Cheng 
and Hafez present a second solution in which i t  is assumed that the first term in equa- 
tion (52) vanishes identically. Consequently, the function g (x) satisfies the equation 

292 

y + 1 f I f "  

g2,2 = - -7j- 

and CY can be related to A and v by the equation 

(53) 

It  a l so  follows that v and 6 can be related by equation (14) for the case where the 
effects of l if t  and thickness are comparable in  the outer region. I t  is felt that this second 
solution is physically more realist ic and, as a resul t ,  is the one used in this report. 

Higher order  potentials.- In the s t r ic tes t  sense,  the acceptance of equations (53) 
and (54) should be contingent on the proof that these equations, when transformed to outer 
variables with equations (9), do not cause the higher order  te rms  in the inner expansion 
for  large values of the inner radial  variable to appear to be of lower order  than It 
is shown in appendix D that the sum of the transformed third-order te rms  in the inner 
expansion is not, in fact, of lower order  than 
to hold for the sums of the fourth and higher order  t e rms  of the inner expansion. 
sequently, i t  can be concluded that equations (53) and (54) are acceptable and that the inner 
expansion for  large values of T can be written as 

€1. 

€1. The same relationship can be shown 
Con- 

CJ = A s i n 0  f(x")w - g2 loge(&-)Fe(x") FL(x") + 6' g6(f) + Fe(x") FL(x") log, r] - A4 sin' olog$($-)v f'(x") f"(x") [ 

(55) 
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Outer Expansion 

Equation (10) gives the form of the outer expansion. I t  has already been shown that 
the gage function of the leading term is related to the radial  stretching parameter v (the 

The higher order  gage functions in the outer expansion can be determined from an  obser- 
vation of the inner expansion written in t e rms  of outer variables for large values of the 
inner radial variable F. 

I 
P reciprocal of the nondimensional radial  length scale in the outer region) by equation (13). I 
11 

From equation (55), i t  is seen that this expression is written as 1 
'f 

I t  is seen from equation (56) that e2  and e3  are given by the equations 

2 v a  

2 2  v a  
1 E3 = 

loge 

(57) 

The governing equation for the potential Chl determined by the substitution of 
equation (13) into equation (11) is 

When expansion (eq. (10)) is substituted into equation (7) and the gage functions 
and e3 are specified by equations (13), (57), and (58), i t  is found that the potentials 
and a3 are governed by the equations 

e l ,  e2,  
a2 
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A s  pointed out by Messiter (ref. 4), equations of this type can be solved iteratively for 
?i; << 1. For example, equation (59) is written in the form 

F i r s t ,  the pertinent complementary solution for  I << 1 is obtained as 

where the functions Gl(X) and A(X) are not yet known. A higher order  solution is 
obtained after substitution of equation (63) in the right-hand side of equation (62) and inte- 
gration of the resulting Poisson equation. The solution can then be written as 

This procedure can be continued to higher orders  if necessary. 
to equations (60) and (61) are found, in s imilar  fashion, to be 

The pertinent solutions 

+- Y + '(B'A')'T; log: T; sin e + . . . 4 

B' -k cos 28 +- . . . dj3 = G3@) + Cl(Z) loge 7 + 9 B'B" log: T; - ~ ( 2  - 7 

where the functions G3(F), B($, and C(Z) are, a t  this point, arbitrary.  

Matching of Expansions 

Most of the unknown functions of x in the inner and outer expansions can be deter- 
mined from a matching of the inner expansions for large values of the inner radial  variable 
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(F >> y2) with the outer expansion for  small  values of the outer radial  variable (T << 1). 
As pointed out previously, there are two ways to accomplish the matching, by inspection 
and by the term-by-term procedure which has  been formalized by Kaplun and Lagerstrom 
(ref. 12). 

In this section these two expansions will be matched initially by inspection because 
of the simplicity of this method. It will then be evident that the regions of validity of the 
two expansions do not overlap. In order  to satisfy the traditional requirement (which is 
sufficient but not necessary) that the matching of two expansions be done in a region of 
common validity, an  intermediate expansion with a region of validity which overlaps those 
of the inner and outer expansions will be introduced. This intermediate expansion will 
be matched individually with the inner and outer expansions. It will then be seen that the 
expressions obtained for the inner and outer expansions with the two matching procedures 
are the same. Because the intermediate- expansion procedure meets the sufficient (and 
hence necessary) requirements, it can be concluded that the inspection procedure meets 
the necessary requirements for  this problem. 

Matching by inspection.- An examination of the inner expansion for  F >> y2 and the 
outer expansion for F << 1 shows that the undetermined functions of x in those expan- 
sions can be related as 

' Y + 1 a2f'f" A = FeFe + - 2 

B = f  

C = H  

Consequently, the inner expansion for ? >> y" and the outer expansion for  F << 1 can 
be written as 

2 

- 62 log,(k)F,(x") Fk(x") + 6 2  + F,(x") Fk(x") log, ? - A4 s i n 2 @  l o g i ( $ ) y  f'(x") f"(x") 1 
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and 

respectively. The functions G1 and GQ cannot be determined with this method. 
Methods for determining these functions will be discussed subsequently. 

If the effects of lift and thickness a r e  comparable in the outer region, the param- 
e te r  I/ in equations (67) and (68) can be equated to the equivalent thickness 6 and the 
angle of attack (Y can be related to I/, and hence 6 ,  by equation (54). If the effects of 
lift are dominant in the outer region, the parameter v is related to Q! by equation (54) 
(the order-one constant a can be given a value of one) and the thickness te rms  in equa- 
tions (67) and (68) can be considered to be small. 

I t  should be noted that regardless  of whether the flow in the outer region is governed 
by thickness or  lift o r  both, the lowest order  term in the outer region is a source term 
(a term which var ies  as loge F). It can be seen from equation (68) that even when lift 

secondary importance compared with the source term. 
that the source strength is of the form 

1 
r is dominant in the outer region, the dipole term t e rm which var ies  as = sin 8) is of 

From equation (68) i t  is seen also 

when the effects of l if t  and thickness are comparable in the outer region and of the form 

when the effects of lift are dominant. 
as discussed previously.) The quantity Sk is the apparent nondimensional ra te  of change 
in  the x-direction of the cross-sectional area of the lifting configuration. It is well known, 
of course,  that when the effects of thickness are dominant in the outer region, the source 
strength is of the form 

(For this case the constant a is equated to one, 
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It  should be noted that the function f(x) is the x-distribution of lift for  the configuration 

like flow due to lift which was anticipated intuitively and depicted in figure 2. 
and that the t e rms  in equations (69) and (70) which depend on f provide the thickness- 1 

1 

I 

Matching with intermediate expansion.- Kaplun and Lagerstrom (ref. 12) have estab- 

dure that matching can be performed only in regions where both expansions are valid. An 
examination of expansions (eqs. (67) and (68)) shows that these expansions cannot have a 
common region of validity since the leading term of the former contains a dipole and no 
source and the leading term of the la t ter  contains a source and no dipole. Consequently, 

directly . 

I 

lished a procedure for matching expansions term by term. It  is assumed in this proce- 
I 

I 

I 

I 

I the procedure of reference 12 cannot be used to match expansions (eqs. (67) and (68)) I 

Although the use of the Kaplun and Lagerstrom procedure is not necessary in order  
for a matching of expansions to be valid, i t  is sufficient in order to establish validity. 
There are two ways in which this procedure can be applied to the present problem. One 
approach is to modify the definition of either the inner or  the outer radial  variable or  both 
so  that the expansions in te rms  of these variables have a common region of validity. The 
second approach is to introduce an intermediate variable in such a manner that the region 
of validity of the intermediate expansion overlaps the regions of validity of the inner and 
outer expansions. Actually, the distinction may be somewhat academic since the inter- 
mediate variable may be simply a generalization of the inner or  outer variable. However, 
from a procedural point of view, i t  is the second approach which is used in this report. 

The intermediate variables 2 and ? a r e  chosen to be 

where 

Note that f coincides with T for N = 0 and that the rat io  ?/? increases  monoton- 
ically with N but is always small. The expansion in t e rms  of ? should coincide with 
the outer expansion for  N = 0 and should match term by term with the inner expansion 
for large values of N. The intermediate expansion is written as 
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From an inspection of the inner expansion (eq. (67)) written in te rms  of ? and the gov- 
erning equation (eq. (7)) written in  t e rms  of the intermediate expansion (eq. (73)) and 2, 
it can be shown that the first eight gage functions are written in t e r m s  of v, A ,  and N 
as 

For  N > z 1 the orders  of magnitude of these gage functions increase monotonically with 

the index. For  N < -, 1 these gage functions are ordered as 2 

IJ-2 > P3 > > P7 > P8 > P4 ’ P!j  > IJ.6 (75) 
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From equations (7), (72), (73), and (74), it can be shown that the intermediate potentials x1 
to x5 are governed by the two-dimensional Laplace equation in the cross-flow plane and 
that the potentials x6, x7, and x8 are governed by the Poisson equations 

(77) 

I t  should be noted that the governing equations of the intermediate potentials a r e  all inde- 
pendent of the parameter N. Consequently, the solutions are independent of N also. 
Higher order  gage functions and the governing equations for  higher order  potentials can 
be obtained in a straightforward manner. 

When the Laplace equations governing the potentials x to x 5  and equations (76), 1 
(77), and (78) for x6, x7, and x8, respectively, a r e  integrated, and the resulting inter- 

1 mediate expansion with N 2 -  is matched term by term with inner expansion in the man- 2 
ner outlined by Van Dyke (ref. 13), i t  is found that the solutions for the intermediate poten- 
tials are written as 

x4 = 4 y + 

f '(ii) f"(ii) 

= - [HB) + L g  f'(2) f"(2) log, i. 
x5 1 
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Note that the validity of these solutions does not depend on the parameter N and hence 
the relative orders  of magnitude of the intermediate gage functions. It can be shown that 
for  N < 2, the gage functions are ordered as inequalities (eq. (75)) indicate, and the inter- 
mediate expansion can be matched term by term with outer expansion (eq. (68)). 
eq. (65) for additional t e rms  in the outer potential 
and outer expansions coincide. 

1 

(See 

@2.) For  N = 0 the intermediate 

It has been shown that there is an intermediate expansion (eq. (73)) with gage func- 
tions and potentials given by equations (74) and (79), respectively, which has a region of 
validity that overlaps those of the inner and outer expansions. It has a lso been shown 
that the resul ts  for the inner and outer expansions obtained by use of the intermediate 
expansion are the same as those obtained by inspection. Consequently, it is concluded 
that the inspection procedure is adequate for the present problem. 

Solution Near Configuration Surface 

The solution near the surface of the configuration can now be determined to within 
This solution is written in t e rms  of inner variables an arbi t rary additive function of x. 

to second order  in s in  CY and 6 as 

where $1 is one of the basic lift potentials discussed in appendixes A and B, f is the 
related dipole strength distribution, Fe is the equivalent thickness distribution given by 
equation (31), IC/ is the near-field thickness function given by equation (30), H is the 
secondary second-order outer-region source-strength distribution given by equation (51), 
@;a, @&, and @gc are the second-order particular solutions given by equations ( C l l ) ,  
(C15), and (C20), respectively, @fa, @fb, and @gc are the second-order complemenkby 
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solutions given by equations (C13), (C18), and (C23), respectively, and @2d is the solu- 
tion given by equation (48). I t  should be noted that the presence of the body has been 
ignored in the derivation of the expressions for  @za, @2b, @zC, @za, @2b, @zC, 
and @2d. It should also be noted that the function G 2  GI@) + A4 sin2 (Y G 3 ( 3  cannot be 
determined with the present method. The determination of this function is discussed in 
the next section. 

P P P C C' c 

Equation (80) for  the perturbation velocity potential can be used to determine the 
pressure  coefficient a t  the configuration surface. 
pressure coefficient in te rms  of body-oriented cylindrical polar coordinates is 

It is shown in reference 4 that the 

c -l 

Determination of Additive Function 

The solution for  transonic flow over a lifting slender configuration has been deter- 
mined to within an arbi t rary additive function of distance along the axis. It  has been 
pointed out previously that this function cannot be determined with the method of matched 
asymptotic expansions. 
another method. 

Consequently, the solution for this function must be obtained with 

It should be noted that the method of matched asymptotic expansions can be used to 
determine the solution for  potential flow past a slender body to within an arbi t rary function 
of distance along the axis also. 
a r e  governed by a l inear equation, this function can be determined with the integral equa- 
tion method. (See ref. 26.) Spreiter and Alksne (ref. 27) and Aoyama and Wu (ref. 28) 
present approximate methods for determining this function for transonic slender-body 
flows, which a r e  governed by a nonlinear equation. However, these approximate methods 
are not, in general, as accurate as required. At present,  solutions of sufficient accuracy 
can be obtained only with numerical methods which t reat  the full two-variable problem 
rather  than the one-variable problem for the additive function. One such method for treat- 
ing the transonic slender-body problem is that of Bailey (ref. 29), which is based on the 
successive line overrelaxation technique developed by Murman and Cole (ref. 30). 

Fo r  subsonic and supersonic slender-body flows, which 

The approximate methods of Spreiter and Alksne (ref. 27) and Aoyama and Wu 
(ref. 28) could be generalized and applied to the present problem of transonic flow past  a 
lifting slender configuration. However , the more accurate approach of solution by numer- 
ical integration is preferable. Three-dimensional numerical calculations of transonic 
flow about wings and wing-body configurations have been made with methods based on 
that of Murman and Cole. 
dimensional nature , these calculations require large amounts of computing time and 

(See ref. 31, for example.) However, because of their three- 
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computer storage. Rapid two-variable approximate methods for  treating the present 
problem have been developed by Barnwell (ref. 32) and Cheng and Hafez (ref. 25). The 
approximations used in these methods are based on the theory presented in this report  
and reference 9. It should be noted that the method of Barnwell can be used in  the angle- 
of-attack range of order  

method of Cheng and Hafez is restr ic ted to the much smaller  angle-of-attack range of 
2 order  6 . 

(6 is the equivalent thickness ratio), and that the 
l/c; 

NONSLENDER-CONFIGURATION PROBLEM 

Wings are described traditionally as being nonslender if the reduced- span-length 

rat io  !/mb/Q is of order  one. In this section nonlifting nonslender transonic wing 
theory is reviewed, the scaling relationships for transonic flow about nonslender lifting 
configurations are derived, and it is shown that second-order nonslender wing theory 
is in agreement with sweep theory although first-order theory is not. 
between second-order theory and sweep theory holds for  both nonlifting and lifting flows. 

The agreement 

Nonslender Nonlifting Wing Theory 

Messiter (ref. 4 )  and Cole and Messiter (ref. 11) t rea t  the problem of transonic flow 
past  a nonlifting nonslender wing. This problem is characterized by the parameters  

. 

t W - << 1 Q J 
It  can be shown that for transonic flow past  nonslender wings, there is no inner 

region where the governing equation simplifies. A s  in slender configuration theory, the 
radial  length scale in the outer region is of the form Q/v, and the quantities 

2 
1 - Mo, (The slenderness approximation was not made 
in obtaining this equation.) It can be seen from equations (13) and (81) that the semi- 
span b, which is the radial  length scale near the configuration, is of the form 

v, e l ,  and 
can be related by equation (13). 

Consequently, the radial  length scales in the inner and outer regions are of the same order  
and, as a resul t ,  the governing equation and scaling relationships for the outer region apply 
all the way to the configuration surface. 
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The relationship between the wing thickness-length rat io  and the parameters  v, 
el, and 1 - 
form 

can be determined from the surface boundary condition, which is of the 

and the expression for the perturbation velocity component wc in t e rms  of the perturba- i 

tion velocity potential, which is 

It  follows from the boundary condition and equations (13) and (82) that I/ and tw/Q can 
be related as 

The gage function el and the free-s t ream Mach number M, a r e  given in te rms  of 
b/Q by the equations 

2 2/3 
1 - M, 

K E l  = 

It should be noted that the scaling relationships for transonic nonslender-wing theory 
a r e  the same as those for transonic two-dimensional theory. 

Nonslender Lifting- Wing Theory 

Consider the problem where the angle of attack (Y is small  but is much la rger  than 
the wing thickness-length rat io  tw/Q. 
is of the form 

The boundary condition a t  the surface of the wing 

From equations (13), (82), and (85), i t  can be seen that v is related to the angle of attack 
by the equation 

v = ( s i n a )  1 /3 
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and the gage function e l  and the free-s t ream Mach number are given by the equations 

If the wing thickness-length rat io  tw/Q and the angle of attack CY are of the same order  
of magnitude, these quantities can be related by the equation 

where a is an  order-one constant, and the quantities u, e l ,  and Mc, can be evaluated 
with either equations (83) and (84) o r  (86) and (87). 

I t  was shown in the previous section that the scaling for  the outer region applies all 
the way to the wing surface for nonslender wings and that, as a result ,  the wing semispan- 
length rat io  h varies  as 1/v. Consequently, for  lift-dominated and thickness-dominated 
nonslender flows, h is scaled as 

C A =  
(sin CY) 1 /3 

and 

C h =  

(tw/Q) ll3 

respectively. When s in  CY and tw Q are related by equation (88), both of these equa- 
tions apply. 

l 
It  can be shown from equations (7), (9), ( lo ) ,  (83), (84), and (88) that when the effects 

of lift and thickness are comparable, the outer potential 9 1  for nonslender flow is gov- 
erned by equation (59). 

Approximate Governing Equation for  Nonslender -Configuration Problem 

It has been observed by Lomax, Bailey, and Ballhaus (ref. 31) that equation (59) is 
not adequate for treating flow over swept wings in that the conservation form of this equa- 
tion does not lead to the same inviscid shock-jump condition for  the pressure for flow past  
a n  infinite swept wing as obtained from simple sweep theory. In reference 31 it is shown 
that the proper shock-jump Condition for  an  infinite swept wing can be obtained if several  
t e rms  are added to the governing equation. It can be shown that all of these additional 
te rms  are in the second-order approximation to the governing equation for 9. It is prob- 
able that other second-order t e rms  should be included since the t e rms  added in refer- 
,ence 31 were chosen for a special case. 

37 

’ IIIII I I I I I 1  I l l  



The governing equation for  the second-order potential ib2 in the outer expansion 
(eq. (10)) for 
tion can be written as 

cp for a nonslender wing has been derived by Messiter (ref. 4),. This equa- 

The gage function e2 was found to be 

E2 = v 4 (91) 

The value of the quantity 
the velocity potential be approximated by the f i r s t  two te rms  in the outer expansion 
(eq. (10)) s o  that 

v in equation (91) is given by equations (83), (86), o r  both. Let 

cp + E 2 9 2  

It can be shown from equations (13), (59), (84), (go), (91), and (92) that the governing equa- 
tion for  the second-order approximation to cp is 

It is clear  that the t e rms  on the left  and the f i r s t  term on the right are those obtained from 
the first-order equation. The second-order t e rms  which were added in reference 31 are 
the te rms  on the right which involve derivatives with respect  to y. 

COMPARISON O F  SLENDER- AND NONSLENDER-WING THEORY 

In this section the Mach number range and flow-field structure for slender-wing 
and nonslender-wing flows are compared, and the Mach number range and flow-field struc- 
ture for  flows which exhibit both slender-wing and nonslender-wing characterist ics are 
deter mined. 
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Mach Number Range and Structure of Slender-Wing Flows 

For  purposes of comparison, configurations composed of wings alone are considered. 
It has been shown that if slender-wing theory is applicable, the velocity potential in the 
outer region can be written to lowest order  as 

It can be shown from equations (1) and (3) that the equivalent-body thickness 6 can be 
written as 

6 2  - 1 tw 
C W X T  (cw = O(1)) (95) 

where, for slender-wing theory, 

Since the parameter A can be associated with the aspect ratio,  the wings under consid- 
eration have aspect ra t ios  of order  one. 
the velocity perturbations in the outer region can be written as 

It  can be shown from equations (94) and (95) that 

These perturbations are found in a region of the cross-flow plane bounded on the outside 
by a radius r of the order  

and on the inside by a radius which satisfies the inequality 
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Inside this region the perturbations are obtained from the inner expansion and, as a result, 
are larger .  The governing equation in the bounded outer region where equations (96) apply 
is of mixed elliptic-hyperbolic type. In the inner region the governing equation is para- 
bolic and in the far field beyond the bounded outer region the equation is elliptic if Mo, 
is less than 1 and hyperbolic if M, is greater  than 1. The Mach number range in which 
slender-wing theory applies is 

Mo, = 1 + K62 = 1 + 0 (98) 

Mach Number Range and Structure of Nonslender-Wing Flows 

It  has been shown that the velocity potential for  nonslender-wing theory can be writ- 
ten as 

and that X is of the form 

Consequently, nonslender-wing theory applies to large-aspect-ratio wings. From equa- 
tion (99) i t  can be shown that the velocity perturbations are of the form 

2/3 

u, az 

These perturbations are applicable in a region which extends above and beneath the wing 
to a distance of the order  
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The governing equation is of mixed elliptic-hyperbolic type in this region and of elliptic 
o r  hyperbolic type in the far field. The Mach number range in which nonslender-wing 
theory applies is 

I t  can be seen from equations (96) and (101) that for wings with a given thickness 
ratio, the velocity perturbations obtained from nonslender-wing theory, which applies to 
wings of large aspect ratio,  are la rger  than those obtained from slender-wing theory, 
which applies to wings with aspect ra t ios  of order  one or  less. From equations (97) 
and (102) it can be determined that the radial  extent of the slender-wing perturbations is 
la rger ,  and from equations (98) and (103) i t  is seen that the Mach number range in which 
the nonslender-wing perturbations occur is larger .  

Flows Exhibiting Both Slender-Wing and Nonslender-Wing Characterist ics 

It can be shown that slender- and nonslender-wing theory are both applicable to flow 
fields about large aspect ra t io  swept wings if 1M, 
shown in figure 6. The quantities L, b, and Q are the total length, semispan, and 
chord of the wing. It is assumed that 

is close enough to 1. Such a wing is 

A = = 0 ( 1 )  L 

= $>. 1 

If both theories apply to the same flow field, nonslender-wing theory applies close to the 
wing where the characterist ic length scale in the x-direction is the chord I., and slender- 
wing theory applies at large distances f rom the configuration where the length scale in 
the x-direction is the total length L. 

In the region close to the wing where nonslender-wing theory applies, the velocity 
potential is given by equation (99) and the perturbation velocities satisfy equations (101). 
These equations pertain in the Mach number range given by  equation (103) and in a region 
which extends above and beneath the wing a distance of the order  of the length scale 
1(h/Q)-'l3. This region of the cross-flow plane is depicted in the cross section in fig- 
u r e  6. The governing equations in this region are of mixed elliptic-hyperbolic type. The 
aspect ra t io  of the wing is given by equation (100). It follows from equation (100) that the 
chord-length and thickness-length rat ios  are 
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From figure 6(a) it can be seen that the equivalent thickness-length rat io  is given by the 
equation 

t2 =tw!La=, - - _ - -  tw Q - A 3 p ) 5 / 3  
6 % -  L2 L L L  L L  c 2 Q  

Slender-wing theory applies if the Mach number is in the range 

The velocity potential in the outer region (the region at large radial distances from the 
body) is written as 

where, in this case, the outer variables F, 7,  and Z are written as 

I t  follows that the velocity perturbations in the outer region are of the order 
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L A  

(a) Wing planform. 

Elliptic or hyperbolic far field 

(b) Cross section A-A. 

Figure 6.- Large-aspect-ratio wing to which both slender- and nonslender-wing theory 

apply for M, = 1 + 0 
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As shown in figure 6(b), the outer region is bounded on the outside by a radius of the order  

and on the inside by a radius  of the order  

According to slender-wing theory, the governing equation is of mixed and parabolic type 
in the outer and inner regions, respectively, and of either elliptic or hyperbolic type in 
the far field beyond the outer region. I t  can be seen f rom equation (102) and inequal- 
i ty  (105) that the mixed flow region near the wing predicted by nonslender-wing theory is 
embedded in the parabolic inner region predicted by slender-wing theory if the Mach num- 
ber  falls within the range given by equation (104). 

CONCLUDING REMARKS 

A solution has  been obtained for the perturbation velocity potential for  transonic 
flow past  lifting configurations with span-length rat ios  of order  one. This solution per- 
tains to configurations for  which the reduced span-length rat io  (the product of the span- 

length ratio and the quantity where & is the free-stream Mach number) 
is small. The angles of attack which are considered are small  but are large enough to 
insure that the effects of lift a r e  either dominant or  comparable to the effects of thickness 
in the outer region. The analysis was performed with the method of matched asymptotic 
expansions. 

It is shown that the lowest order  effect of lift in the outer region is in the form of 
a source,  and that the doublet effect is of secondary importance in this region. - This find- 
ing pertains both when the effects of lift are comparable with those of thickness and when 
the effects of l if t  are dominant. As a resul t  of the source flow due to lift, streamlines 
are deflected outward more than they would be by thickness effects alone. 

A short  study is made of the flow about lifting nonslender configurations (configura- 
tions with reduced span-length rat ios  of order  one). The order  of magnitude of the veloc- 
ity perturbations is established, and i t  is shown that second- order  nonslender-wing theory 
is in agreement with sweep theory. The resu l t s  of slender- and nonslender-wing theory 
are compared, and the Mach number range and general flow-field structure of flows exhib- 
iting both, slender and nonslender characterist ics are determined. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Hampton, Va., April 11, 1975. 
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APPENDIX A 

EXISTING CROSS-FLOW SOLUTIONS FOR WING BODY CONFIGURATIONS 

As  discussed in the text, solutions have been obtained for  the cross-flow velocity 
potentials for the three wing-body configurations depicted in figure 5. The purpose of 
this appendix is to review these solutions and to determine the asymptotic forms at large 
distances from the configurations. 

Attached Leading-Edge Flow Pas t  Configurations With Swept Leading Edges 

General solution.- A cross  section of the wing-body configuration is shown in fig- 
ure  7. The solution for attached leading-edge flow past  this configuration was obtained 

t 

t 
Figure 7.- Cross  section of configuration composed of circular body 

and flat-plate wing. 

by Spreiter (ref. 15) and Ward (ref. 16). Let the complex variable in the cross-flow plane 
be 

X = y ” + i Z  

The complex perturbation potential for this problem is written as 

where 



APPENDIX A - Continued 

The cross-flow perturbation velocity potential is 

@l(x",F,8) = Re[W(x",X] 

where the relation 

has  been used. 

Solution far from configuration.- For large values of ?, equation (Al) can be writ- 
ten as 

Thus, the velocity potential for large values of can be written as 

4 
For practical purposes the quantity (Fb/Y2) 
generally of orders  6 and 1, respectively. Consequently, the velocity potential for  
large values of F is 

can be neglected since Fb and f 2  are 
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APPENDIX A - Continued 

Separated Leading-Edge Flow Past Configurations With Swept Leading Edges 

General solution.- Consider configurations composed of circular bodies and flat- 
plate wings. 
obtained by Wei, Levinsky, and Su (ref. 18) by use of the method developed by Mangler 
and Smith (ref. 19) and Smith (ref. 20) for  conical flat-plate wings. The physical cross- 
flow plane and the transform plane are shown in figure 8. 

The cross-flow solution for  nonconical configurations of this type was 

The outer par t  of the vortex 
Segmented X-plane r vortex sheet N 

Vortex 
L e  f 

I 
(a) Physical plane. 

Y -plane 

t 
(b) Transform plane. 

Figure 8.- Model for  separated leading-edge flow. 
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APPENDIX A - Continued 

is approximated with a segmented vortex sheet which emerges from the wing leading edge. 
The inner par t  of the vortex sheet  is modeled with a vortex core and a feeding sheet  which 
connects the core to the vortex sheet. 

The complex perturbation potential for  this model is written as 

where the asterisk denotes the complex conjugate, Xv and X(o) are the positions of 
the vortex core and the centers of the vortex-sheet elements, I?, is the strength of the 
vortex core,  and A@ is the potential jump ac ross  the vortex sheet. The values of these 
quantities are determined from the leading-edge Kutta condition, the condition that the 
pressure  and normal velocity are continuous ac ross  the vortex-sheet elements, and the 
assumption that no force is exerted on the system composed of the vortex core and feeding 
sheet. 

Solution far from configuraEn.- I t  can be shown that for  angles of attack such that 
s in  01 << 1 
order  (sina) '  where c 5 1 so  that equations (A3) and (A4) apply to separated as well 
as unseparated leading-edge flow. Let  Y(X,Xv) and Y(Z,X:) be written as Y, and 
Y;, respectively. In the region where P and hence Y(Z,X) are large,  the logarithmic 
expression for the vortex core in equation (A5) can be written as 

the term proportional to rv and the integral term in equation (A5) are of 

loge( - yv *) = log - $) - loge(l  + g) = - 2  W V )  

Y + Y, 

Assume that the vortex location is 

N 

Xv = f, - dv + iZv 

where &, and Zv are shown in figure 8. It is reasonable to assume that for small  
angles of attack, the distance between the vortex core and the wing is of the form 

Ev = O(sin a) 
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APPENDIX A - Continued 

In fact, Brown and Michael (ref. 33) show that this is the case for their simplified model 
for conical flow past  a delta wing. Fo r  d,, there are two cases of interest. If the vor -  
tex core lies near the leading edge of the wing, then zv is of order  
c 5 1 (for the Brown and Michael model for  conical flow, c = 9 .  ') If the vortex core lies 
inboard of the tip, & is of order  one. 

(sin a)' where 

First consider the case where 

dv = O(sinca)  

After some algebraic manipulation, it can be shown that Yv is 

where 

(2, ' 0) 

and that 

I t  follows from equations (A8) and (A10) that for large values of 7,  equation (A6) can be 
written as 

In a s imilar  fashion the t e rms  

nitude also. It can be seen from reference 18 that the leading-edge Kutta condition is 
written as 

log, can be shown to be of this order  of mag- 
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APPENDIX A - Continued 

F rom equations (A7), (A8), and (AlO), it can be determined that 

A similar  expression applies for  Since the vortex-core term and the integral 
IY(dI  

- 
t e rm in equation ( A l l )  are generally of the same order  of magnitude and do not cancel, i t  
follows that 

This  order-of-magnitude estimate for rV 
Brown and Michael (ref. 33) that c = - and rV i s  of order  1. Consequently, the 
vortex-core term and the integral term in equation (A5) are of the order  
can be neglected in the f i r s t  approximation. 

is consistent with the delta-wing resul ts  of 

( s ina)C and 

2 
3 

Consider the case in which 

;iv = O(1) 

and let 

After considerable manipulation, it is found that 

where 

= ‘IT + tan” 
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and that 

From equations (A6), (A13), and (A15), it can be shown that in the f i r s t  approximation, 

- y(0) can also be shown to be of this order. The 
e I11 Y + Y*(0) 

Similarly, the quantities log 

magnitude of the core strength rV and the quantities -dA$(o)/do cannot be estimated 
from equation ( A l l )  in the manner used previously because the orders  of magnitude of 
the distances from the vortex core and vortex-sheet segments to the wing tip vary and 
the o rde r s  of magnitude of the coefficients of the quantities -dA$/do and rV in equa- 
tion ( A l l )  depend on these distances. However, i t  is reasonable to assume that the core  
strength rv and the vortex-sheet segment strengths -dA$/do a r e  of order  1 or  
smaller.  Consequently, the vortex-core term in equation (A5) is of order  s in  a, o r  
smaller ,  and the contributions of the various vortex-sheet segments to the integral term 
vary from order  s in  cy or smaller  near the core to order  (sin a,)' near the tip. These 
contributions can be neglected in the f i r s t  approximation. 

It is concluded that for separated leading-edge flow, the velocity potential for  large 
values of r" is given to lowest order  by equation (A3) or  (A4), which were derived for 
attached leading-edge flow. It has been shown that this conclusion applies both when the 
vortex core is located near the wing tip and when i t  is located well inboard. 

Attached Leading-Edge Flow Pas t  Configurations With Swept 

Leading and Trailing Edges 

General solution.- The derivative E)$ 6% for  this problem has been derived by 1 1  
Mirels (ref. 21) and Mangler (ref, 22). The physical plane and the transform plane 
obtained with the transformation 
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APPENDIX A - Continued 

a2w are shown in figure 9. In the transform plane the derivative T is written as ax az 

(A171 
1 -- a2w - -iq2q; S(Z) 

E az 

where 

X plane t =  N - 
N N 

-y2 - Y 1  

c. 

-Y 

(a) Physical plane. 

Z plane t‘ 
- I --rl 

- 772 772 

(b) Transform plane. 

Figure 9,- Cross-flow planes for  attached leading-edge flow past  configuration with 
swept trailing edge. 
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APPENDIX A - Continued 

The function S(Z) is the function Mirels (ref. 21) developed for  enforcing the Kutta con- 
dition at the swept trailing edge, and K and E are complete elliptic integrals of the 
first and second kinds with the modulus 

It should be noted that Mirels'  S-function is identical to the function H used by Mangler 
(ref. 22). 

Solution far from configuration.- The complex velocity in the physical plane is 
related to that in the transform plane by the equation 

-2 

ax az ax 

a2w is It follows that the equation for - 
ax" ax 

At large distances f rom the wing and body in the transform plane, equation (A17) can be 
written as 

and hence the derivative aW/aZ is approximately 

Thus equation (A19) can be written as 

r 1 
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APPENDIX A - Concluded 

so that the derivative aW/% is written as 

Therefore, for large values of ? the derivative a@,/& can be written as 

r 1 1  

where the modulus of E and K is given by equatdn (. - 72 
are of orders  6 and 1 ,  respectively, and the quantity var ies  between orders  6 
and 1. Consequently, equation (A20) can be written to lowest order  as 

where the modulus of E and K is 

18). The quantities Fh anc 
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APPENDIX B 

FAR- FIELD APPROXIMATION TO CROSS- FLOW SOLUTIONS FOR 

CONFIGURATIONS WITH TWISTED AND CAMBERED WINGS 

The purpose of this appendix is to develop the far-field approximation to the cross- 
flow solution for  configurations with twisted and cambered wings. The wings which are 
treated include those with only swept leading edges and those with both swept leading and 
swept trailing edges. As  in the case of flat wings, the approximation for  the cross-flow 
potential 
only the derivative 
leading and swept trailing edges. The velocity potential is governed by equation (20), the 
two-dimensional Laplace equation in the cross-flow plane, and satisfies the boundary con- 
ditions (eqs. (18)). Let  the potential $1 be written as the sum 

$1 can be determined analytically fo r  wings with swept leading edges only, but 
can be determined analytically for wings with both swept 

where the potentials $la and $ l b  satisfy the boundary conditions 

1 a( pFb O) 
= -sin 8 

aF 

and 

respectively. Equations (B2b) and (B3b) apply on the interval y2 2 ? z Fb if the wing has 
no trailing edge and on the interval y2 2 P 2 y1 if the wing has both leading and trailing 
edges. If the wing has a trailing edge, equations (B2) and (B3) are supplemented by the 
equations 

E -  
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APPENDTX B - Continued 

and 

respectively, on the interval y1 s T 2 Fb. 

Configurations With Swept Leading Edges 

The solution for  the potential @la which satisfies boundary conditions (eqs. (B2)) 
for attached leading-edge flow past  configurations with unswept trailing edges is derived 
in  the first par t  of appendix A. The far-field approximation for  this potential, which is 
given to lowest order  by equation (A4), is a l so  derived. It should be noted that since 
equation (A4) does not contain rb, the use  of the lowest order  form is equivalent to 
neglecting the presence of the body. In a s imilar  fashion the far-field approximation for  
the potential @ l b  which satisfies boundary conditions (eqs. (B3)) can be approximated 
with the solution of Klunker and Harder (ref. 23) for attached leading-edge flow past  
twisted and cambered wings. Let  the complex variable in the cross-flow plane for  the 
wing alone be X, and l e t  the boundary condition for the wing be 

From equation 1.3 of reference 23 it is seen that the complex velocity in the cross-flow 
plane of the wing is 

At large distances f rom the configuration equation (B6) can be written as 

The velocity potential Glb for  large values of F can be obtained from equation (B7), 
and the potential @la can be obtained from equation (A4). Consequently, a t  large dis- 
tances f rom the configuration, the potential $1 is written as 
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APPENDIX B - Continued 

Configurations With Swept Leading and Trailing Edges 

The solution fo r  the derivative a@la/ax" of the potential which satisfies boundary 
conditions (eqs. (B2) and (B4)) for  attached leading-edge flow past  configurations with 
swept leading and trailing edges is derived in the l a s t  pa r t  of appendix A. The solution 
for  the derivative 
and (B5)) can be approximated with the solution of Klunker and Harder (ref. 23) for flow 
past  twisted and cambered wings. The boundary conditions for  the wing treated in refer- 
ence 23 are written in t e rms  of the notation of this repor t  as 

a@Ib/ax" of the potential which satisfies boundary conditions (eqs. (B3) 

N w 

-Y2 5 Y  Z-Y1 

U(X,y.,O) = 0 

Let  the complex variable in the wing cross-flow plane be X. 
erence 23, i t  is seen that the Z derivative of the complex velocity in the cross-flow plane 
of the wing is 

From equation 1.8 of ref- 

- d s  + A,(%) + Bo(%) x -  s 

where Ao(Z) and Bo@) are the functions A and B used in reference 23. 
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APPENDIX B - Concluded 

At large radial  distances from the configuration, equation (B9) can be written as 

The 2 derivative of $lb can be obtained from equation (BIO), and the derivative of 

$la 
of @1 for  large values of F can be written as 

can be obtained to lowest order  f rom equation (A20). Consequently, the derivative 

where the modulus of the complete elliptic integrals E and K is given by equa- 
tion (A22). A method for  determining the function Bo(x) is discussed in section 2 of 
reference 23. 
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APPENDIX C 

SOLUTIONS FOR SECOND-ORDER LIFT POTENTIALS @za, @2b, AND @ac 

Particular solutions for the potentials @2a, @2b, and @2c are derived in very 
general form and are given by equations (43), (44), and (46), respectively. The purpose 
of this appendix is to evaluate these general forms  a t  the configuration surface and to 
determine the complementary solutions necessary to enforce the boundary conditions. 

Cheng and Hafez (ref. 25) have shown that in order  for  the solution for @2a to 
must satisfy a Kutta condition at the leading edge of the wing. In exist, the potential 

reference 25 solutions are obtained for the potentials @2a and @2b for configurations 
with wings which are cambered so  that this condition is satisfied. In this appendix it is 
shown that the solutions derived in reference 25 also apply approximately to flow fields 
where the leading-edge Kutta condition is met by means of leading-edge separation. 

@1 

As stated in the text, the boundary conditions for  the potentials @2a, $2b, and @zC 
are all homogeneous. 
i t  was in reference 25. This approximation is permissible since the body Surface Fb is 
of order  6 .  

In this appendix the body-surface boundary condition is ignored as 

Cauchy Representation of @1 and a@l/aZ for the Leading-Edge 

Separation Model 

The Cauchy representation is used in this appendix as i t  was in reference 25. The 
leading-edge separation model which is employed is that used by Mangler and Smith 
(ref. 19), Smith (ref. 20), Wei ,  Levinsky, and Su (ref. 18), and others. The complex per- 
turbation potential for  this model is given by equation (A5). 
and if the vortex-sheet integration is performed in the physical plane, this equation can 
be written as 

If the body can be ignored 
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APPENDIX C - Continued 

where s is the distance along the wing and vortex sheet from the wing center line, and 
where the strength of a vortex sheet or wing segment is 

Let  a contour be drawn around the system composed of the wing, vortex sheets,  
feeding sheets, and vortex cores  as shown in figure 10. With Cauchy's integral theorem 
the complex potential W can be written as 

where AW is the difference of the complex potential on the inside and outside of the 
feeding sheet. (See fig. 10.) 

Figure 

Ws,,) 

- - , - -  L -__------ - N 

9 2  y2 

10.- Contour around wing, vortex sheets, feeding sheets, and vortex cores. 
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APPENDIX C - Continued 

It can be shown that for practical  purposes, only the first three t e rms  in  equa- 
tion (C3) need to be retained. Consider the last two t e rms  in equation (C3). With equa- 
tion (Cl) the first of these t e rms  can be written as 

- \i.I.-]eiw dw (C4) 
w= wl- 28 

- r~ l i m  p S  log, X, + peiw 
- p-0 w=wl 

where it is assumed that 

It can be shown that to the lowest order  in p 

Consequently, equation (C4) can be evaluated as 

- 2 ~  W(Z,X, + peiw)ieiw 
dw 

X, + peiu  - x 
l im p Jw=wl 

1 p-0 w=w 

In a s imilar  fashion it can be shown that the last t e rm in equation (C3) vanishes. Consider 
the fourth and fifth t e rms  in equation (C3). It can be shown that AW has the values rV 
and -rV on the feeding sheets f rom X(Smax) to X, and -X* ( Smax ) to -x: > 

respectively. It follows that 

61 



APPENDIX C - Continued 

Assume that several  turns of the vortex sheet are included as shown in figure 11. From 
this figure it can be seen that for  points X located near the wing surface 

X-plane 
N 

y2 I 

(a) Physical plane. 

7 

S 

(b) Vortex- sheet strength. 

Figure 11.- Variation of vortex-sheet strength. 
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APPENDIX C - Continued 

It follows from these inequalities and equations (C5) and (C6) that 

It is concluded that the potential 
mated as 

for  separated leading-edge flow can be approxi- 

where i t  is assumed that the flow model includes several  turns of the vortex sheet as 
shown in figure 11. 

Consider the derivative $i. From equation (C7) i t  can be shown that 

In the derivation of this equation, the facts that for  a symmetric flow field y(Z,s) is anti- 
symmetric about the wing center line and that the quantity y'(Z,s) is very small  a t  all 
points on the vortex sheet have been used. The last condition, which arises because the 
vortex sheet can support no force,  is obtained from equation (20) of reference 18. It is 
well known that the magnitude of the vortex-sheet strength diminishes as distance along 
the sheet f rom the wing tip increases;  a schematic of the type of behavior which Smith 
(ref, 20) found fo r  a delta wing is shown in figure 11. Consequently, the contribution of 
the nonintegral t e rms  in  equation (C8) can be made arbi t rar i ly  small  by increasing the 
size of the vortex sheet sufficiently. A s  a result ,  equation (C8) is approximated in this 
appendix as 
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APPENDIX C - Continued 

It should be noted that equation (C9) is exact for  attached leading-edge flow. 

Solution for  &, 
This derivation is the same as that of reference 25. The general form of the par- 

The derivative @i(x",X,X*) is given by equa- ticular solution is given by equation (43). 
tion (C9). A s  stated previously, the Kutta condition applies a t  the wing leading edge so 
that to lowest order  

Equation (C10) is exact if the flow is attached at the leading edge. From equations (43), 
(C9), and (ClO), the particular solution for @za can be written as 

- 2 .r,"=: y'(x",s) log, (s - X) ds  Jt=72 - y'(E,t) log, (t - X*) dt  
"Y2 t=-y2  

From equation (C11) i t  can be shown that the normal derivative of @fa a t  the wing sur-  
face is 

where the notation P.V. denotes the principal value of the integral. 

The potential @2a must satisfy a homogeneous Neumann boundary condition a t  the 
wing surface. As a result ,  the general form of the complementary solution of @za is 
given by equation (47). With equation (C12) the potential @ga can be written as 
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APPENDIX C - Continued 

At la rge  radial  distances F from the configuration, equation (C13) can be written as 

c 1 s t=-y2 t=82 N v ' (E , t ) ( f i  + log, It - s [ ) d d d s  (C14) 

Solution for  @2b 

The derivation of this solution is the same as that of reference 25. The general 
form of the particular solution is given by equation (44). The appropriate form of the 
potential 
from equations (44) and (29) that 
of @2b at the wing surface are, respectively, 

$1 to be used in evaluating this solution is given by equation (29). I t  follows 
near  the wing surface and the normal derivative P 

@2b P 

and 

The potential @2b must satisfy a homogeneous Neumann boundary condition a t  the 
wing surface. Consequently, the general form of the complementary solution of 42b is 

When equation (C16) is substituted into equation (C17), it is found that the complementary 
solution is 

g"(Z,s) - m'(Z,s) - g'(X,s$ log, Es - X)(s - X*d d s  . (C18) 

where the function m is given by equation (49). At  large radial  distances F from the 
configuration, equation (C18) can be written as 

s q 2  
@;b = - - log, F 1 n. {m(Z,s) g"(X,s) - m'(%,s) - gf(X,s$ d s  

2 7 2  s=-y2 
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APPENDIX C - Concluded 

Solution for  $2c 

The general form of the particular solution for  $zC 
With this equation and equation (29) for  the potential G1 
be shown that $cc near the wing surface and the normal derivative of $iC at the wing 
surface are, respectively, 

is given by equation (46). 
near the wing surface, i t  can 

and 

The potential $2c must satisfy homogeneous Neumann boundary conditions a t  the 
wing surface. 
tial @2c is 

Consequently, the general form of the complementary solution of the poten- 

r- 1 

With equation (C21), equation (C22) can be written as 

s=y2 
r$gc = - 1 m(Z,s) log, Es - X)(s - X*] ds 

4nA2 s=-y2 

where the function m(Si,y) is given by equation (49). At large radial distances P from 
the configuration, equation (C23) can be written as 

log, f m(2,s) ds 
1 

s=-y2 
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APPENDIX D 

THIRD-ORDER INNER POTENTIALS 

Consider the third-order t e rms  in inner expansion (eq. (16)). When this expansion 
is substituted into equation (7) subject to the assumption that CY, A ,  and v are related 
by equation (54), it is found that the potential @3,3 is governed by the two-dimensional 
Laplace equation in the cross-flow plane and that the potentials @ and $3 1 are 
governed by the Poisson equations 3 92 9 

It  is also found that the potential G3 is governed by a Poisson equation with the 
same degree of complexity as equation (7). For large values of the inner radial vari- 
able ?, the equation for $3 can be written as 

The particular solutions to equations (Dl), (D2), and (D3) for ? >> y2 a r e  

! 
IIE - I 
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APPENDIX D - Concluded 

and @' are of the form 
3 92 

It can be seen that if the complementary solutions @3,3 

the sum of the third-order t e rms  in the inner expansion when written in t e rms  of outer 
variables for  large values of the inner radial  variable ? satisfies the equation 

I t  is seen that this sum is not of lower order  than €1. 
shown to hold for the sums of the fourth and higher order  t e rms  of the inner expansion. 

The same relationship can be 
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